Borsada Optimum Yapay Sinir Ağının Belirlenmesi

Author:

Number of pages:
239-252
Language:
İngilizce
Year-Number:
2020-Volume 15 Issue 1

Yapay zekâ uygulamaları her alanda olduğu gibi finans alanında da oldukça fazla kullanılmaktadır. Finans alanında zaman serilerinin analizi için en fazla uygulanan yapay zekâ metodu ise yapay sinir ağlarıdır. Yapay zekâ yöntemlerinin insan beynine benzer bir çıkarım yapmaları veya öğrenmeye dayalı sistemler olmaları, analizlere sağladıkları katkılardan en önemlileridir. Tabi ki bu yöntemlerin gelişme sürecinin teknolojinin gelişmesiyle yakından ilişkili olduğu da unutulmamalıdır. Yani tüm avantajlarına rağmen yöntemlerin kullanılmasındaki talep, artık işlemlerin daha hızlı ve basit şekilde yapılabiliyor olması sayesindedir. Yapay sinir ağları ile ilgili geçmişte yapılmış olan çalışmalar incelendiğinde birçoğunun başarılı tahminlerde bulunduğu görülmektedir. Ancak, elde edilen sonuçların farklı olduğu da bilinmektedir. Bunun sebebi ağ mimarileri, katman sayısı ve eğitim algoritması gibi sistemin performansını etkileyebilecek unsurların bulunmasıdır. Bu çalışmada Borsa İstanbul’da kurulması gereken optimum yapay sinir ağı üzerinde durulmuştur. Nasıl bir ağ yapısının Borsa İstanbul’da daha iyi performansla çalışacağı irdelenmektedir. Bunun için ağ mimarileri, gizi katman sayıları ve eğitim algoritmaları ile birçok analiz gerçekleştirilmiştir. Analizlerde BİST100 endeksinin tahmin edilebilmesi için girdi değişken olarak temel ve teknik verilerden yararlanılmıştır. Temel değişkenler; Amerikan Doları, mevduatlara uygulanan faiz oranı ve para arzı(M2)’dir. Teknik değişkenler ise; MACD, RSI, Stokastik ve Momentum’dur. Çalışma sonucunda, BİST100 endeksi ile yapılan analizlerde feed-forward network’lerin kullanılmasının ve Bayesian Regulation eğitim algoritmasının seçilmesinin uygun olacağı gözlenmiştir. Ayrıca gizli katman sayısının arttırılmasının performansı arttırdığı gözlense de 5’ten fazla katman sayısı seçilmesi durumunda performans artışının yavaşladığı farkedilmiştir. Bu yüzden, sistemin hızı ve ağın ezberleme sorunlarına karşı ideal katman sayısının 5 olması gerektiği düşünülmektedir.

Keywords


Artificial intelligence applications are widely used in the field of finance as in all fields. In the field of finance, artificial neural networks are the most commonly used artificial intelligence methods for the analysis of time series. The fact that artificial intelligence methods make similar inferences to the human brain or that they are systems based on learning is the most important of their contributions to analysis. Of course, the development process of these methods is closely related to the development of technology should not be forgotten. In other words, despite all the advantages, the demand for the use of methods is now due to the fact that transactions can be done more quickly and simply. Past studies of artificial neural networks show that many of them make successful predictions. However, it is also known that the results are different. This is because there are elements that can affect the performance of the system, such as network architectures, number of layers, and educational algorithms. In this study, the optimum artificial neural network that should be established in Istanbul Stock Exchange is emphasized. How a network structure will work with better performance in Borsa İstanbul is examined. For this purpose, many analyses were carried out with network architectures, hidden layer numbers and educational algorithms. In the analysis, fundamental and technical data were used as input variables in order to predict the BIST100 index. The main variables are US Dollars, interest rates on deposits and money supply (M2). The technical variables are; MACD, RSI, Momentum and Stochastic. As a result of the study, it was observed that the use of feed-forward networks and Bayesian Regulation training algorithm would be appropriate in the analyzes made with BIST100 index. In addition, it was observed that increasing the number of hidden layers increases the performance, but it is observed that performance increase slows down if more than 5 layers are selected. Therefore, it is considered that the ideal number of layers should be 5 against the speed of the system and the problems of memorization of the network.

Keywords

Article Statistics

Number of reads 1,402
Number of downloads 665

Share

Turkish Studies-Economics,Finance,Politics
E-Mail Subscription

By subscribing to E-Newsletter, you can get the latest news to your e-mail.